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A unified approach to approximating spatial derivatives in particle methods using
integral operators is presented. The approach is an extension of particle strength
exchange, originally developed for treating the Laplacian in advection–diffusion
problems. Kernels of high order of accuracy are constructed that can be used to
approximate derivatives of any degree. A new treatment for computing derivatives
near the edge of particle coverage is introduced, using “one-sided” integrals that only
look for information where it is available. The use of these integral approximations
in wave propagation applications is considered and their error is analyzed in this
context using Fourier methods. Finally, simple tests are performed to demonstrate
the characteristics of the treatment, including an assessment of the effects of particle
dispersion, and their results are discussed. c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

Particle-based Lagrangian numerical methods are useful for analyzing many different
physical phenomena. The vortex particle method (VPM) has become a useful tool for
computing incompressible flows in which vorticity is an integral component [5], and re-
cently, the VPM has been adapted to compressible flows by Eldredge et al. [9]. The
method of smoothed particle hydrodynamics (SPH) is applied in the contexts of astro-
physical fluid dynamics and gas dynamics [11]. In each of these methods it is often
necessary to compute derivatives of the primary variables. In viscous applications of the
VPM, the governing equations contain the Laplacian of the vorticity. In SPH the gradi-
ent of the pressure is computed. The compressible VPM of Eldredge et al. [9] requires
calculation of the Laplacian of the enthalpy, as well as gradients of enthalpy and en-
tropy in the baroclinic term. The challenge in each of these methods lies in accurately
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computing the derivative of a quantity from information only available at scattered loca-
tions.

The developers of these methods have devised many different schemes for treating these
derivatives. Although the methods have evolved independently, the schemes they use are
largely based on the same principle, that particles are collaborative entities with global
rather than local, isolated behavior, so it is natural to use cumulative (i.e., integral) oper-
ators to approximate local (i.e., differential) operators. For instance, SPH is based on the
interpolation of a field quantity by a finite set of “smoothed particles”; the pressure gradient
is computed by simply applying the gradient operator directly to the interpolation kernel
[11]. The VPM shares the interpolative character with SPH: when the Biot–Savart kernel is
mollified by a blob function, the singular vortex particles become regular vortex blobs. Thus,
for her viscous VPM, Fishelov [10] used the same idea as in SPH, applying the differential
operator directly to the blob function for computing the Laplacian of the vorticity.

Particle strength exchange, or PSE, was developed from a different approach. Earlier
work by Choquin and Huberson [1] and Cottet and Mas-Gallic [7] involved a viscous
splitting of the Navier–Stokes equations, with the diffusive component solved by means of
a convolution with the heat kernel. When manipulated into a conservative form, Mas-Gallic
and Raviart [13] found that this diffusion treatment revealed a larger class of schemes
that allowed kernels other than the heat kernel. Degond and Mas-Gallic [8] developed
the method in greater detail and presented a treatment for general convection–diffusion
problems. They first approximate the Laplacian by an integral operator and then discretize
the integral by a quadrature over the particles. Their techniques is now commonly known as
PSE because of the conservation properties that are inherent when two particles “exchange
strength” with one another. This conservation property is particularly important, as the decay
(or growth) of a supposedly invariant global quantity can seriously degrade the accuracy of a
computation. Conservation is not unique to PSE: with a slight modification the SPH formula
can be made to conserve linear and angular momentum [11]. The method of Fishelov [10] is
approximately conservative to the degree of accuracy of the quadrature, which under some
conditions, discussed in Section 3, is spectral. The symmetry of PSE, however, provides it
with natural and exact conservativeness.

Particle strength exchange has been used extensively in vortex methods. The accuracy of
the approach was explored by Choquin and Lucquin-Desreux [2] on model problems and
compared with that of the random walk method. Winckelmans and Leonard [16] used the
technique to account for viscous diffusion in three-dimensional simulations of vortex rings.
Koumoutsakos et al. [12] used it in conjunction with a wall flux treatment in their devel-
opment of boundary conditions for viscous vortex methods. Ploumhans and Winckelmans
[15] adapted the method to account for particles of different core sizes and developed an
image treatment near walls to remove spurious vorticity flux.

In the present work we show that the framework used to develop PSE and its kernel
can be generalized to approximate arbitrary spatial differential operators in many different
physical contexts. It should be noted that the approaches used in [10, 11] also allow for
generalization. We concentrate on PSE because of the exact conservation that it naturally
provides. In addition, we extend the full-space operators to “one-sided” operators, useful
in configurations where particle coverage is asymmetric, such as near boundaries. Fur-
thermore, we present an analysis of the error of these integral operators in the context of
wave convection. Finally, we demonstrate the use of these approximate operators on several
model problems and discuss the results.
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2. PARTICLE STRENGTH EXCHANGE

In a particle method, the computational elements are particles, transported by the local
velocity field. The instantaneous location of particle p, xp(t), is given by the flow map,
xp(t) = X(t ; �p), where �p is the particle’s initial location and the flow map is derived from
the integration of the velocity field, u. Thus, the particle location is governed by

dxp

dt
= u(xp(t), t),

xp(0) = �p.

The value of a field quantity, f , at x = xp(t) is identified with a particle strength per unit
volume, f p(t), and the field is composed of the collection of particles

f (x, t) =
∑

p

Vp(t) f p(t)�ε(x − xp(t)),

where Vp is the particle volume and �ε is a regularized function that approaches a Dirac mea-
sure as its radius, ε, goes to zero. The particle volume changes according to the divergence
of the velocity field,

dVp

dt
= div u(xp(t), t)Vp(t).

For differential operators we use the notation

D� = ∂ |�|

∂x�1
1 ∂x�2

2 . . . ∂x�d
d

,

where � = (�1, �2, . . . , �d ) is a multiindex, |�| ≡ �1 + �2 + · · · + �d , and d is the physical
dimension. Also, y� = y�1

1 y�2
2 . . . y�d

d and �! = �1!�2! . . . �d !. A sum

∞∑
|�|=1

denotes a double sum, an inner sum over all multiindices � with sum equal to |�|, and an
outer sum over all values of |�| ≥ 1.

The general integral PSE operator for approximating the action of D� on f has the form

L� f (x) = 1

ε|�|

∫
( f (y) ∓ f (x))��

ε (x − y) dy, (1)

where �� is the kernel and �ε(x) =�(x/ε)/εd , where ε is the kernel radius. For conservation
reasons, to be discussed shortly, the sign chosen for the term in parentheses depends on
whether |�| is even or odd. If even, then the negative sign is chosen, and if odd, the positive
sign is used. The integral is discretized by midpoint quadrature over the particles, resulting
in the following operator:

L�
h (t) f p = 1

ε|�|
∑

q

Vq (t)( fq (t) ∓ f p(t))��
ε (x − xq (t)). (2)
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From here on, the time dependence of the quantities will not be explicitly written except to
avoid ambiguity.

The rationale for the “strength exchange” label becomes clear if we consider the appli-
cation to specific equations. For example, on application of (2) to the Laplacian operator in
the convection–diffusion equation, the particle strengths evolve according to

d Fp

dt
= 1

ε2

∑
q

(Vp Fq − Vq Fp)�lap
ε (xp − xq ), (3)

where Fp ≡ Vp f p and the superscript of � denotes its use for the Laplacian. For reasons
explained in the next section, the kernel for this operator is constructed to be even in both
coordinate directions. Thus, the right-hand side has a skew symmetry such that when the
equation is integrated, the portion of strength lost by particle p in its interaction with q will
be exactly equal to the portion gained by q. If both sides of (3) are summed over all the
particles, the right-hand side cancels identically and thus the total strength is conserved.
If the equation considered had instead a first derivative, then the kernel should be odd in
its argument, and conservation would be guaranteed if the strengths in the summand were
added rather than subtracted.

3. METHODOLOGY

The derivation of formula (1) is not restricted to the Laplacian operator. In fact, any
differential operator can be given an integral approximation of any order of accuracy,
provided the kernel obeys the appropriate set of moment conditions.

3.1. Full-Space Integral Approximations

Consider a Taylor expansion of the function, f , about a point x and evaluate the expansion
at another point, y:

f (y) = f (x) +
∞∑

|�|=1

1

�!
(y − x)� D� f (x). (4)

Now f (x) is subtracted from both sides and each term is convolved with the unknown
kernel �� scaled by ε. The result is

ε|�|L� f (x) =
∞∑

|�|=1

1

�!
D� f (x)

∫
(y − x)���

ε (x − y) dy,

where the operator L� is defined in Eq. (1), with the negative sign chosen. The variables of
integration are translated and rescaled to simplify the integrals to

L� f (x) =
∞∑

|�|=1

(−1)|�|ε|�|−|�|

�!
D� f (x)M�, (5)

where for notational simplicity the �-moment has been defined as

M� =
∫

y��(y) dy. (6)
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Now the derivative that will be approximated is isolated on the right-hand side. A linear
combination of derivatives can also be approximated, of course, but only one is considered
here:

L� f (x) = (−1)|�|

�!
M� D� f (x) +

∞∑
|�|=1

|�|�=|�|

(−1)|�|

�!
ε|�|−|�|M� D� f (x)

+
∑

|�|=|�|
� �=�

(−1)|�|

�!
M� D� f (x). (7)

To construct a useful approximation, the moments that appear inside the summations on
the right-hand side must vanish to some degree and the �-moment must be nonzero.
With these goals in mind, for an approximation of order r , a set of moment conditions,

M� =




(−1)|�|�!, � = �,

0, |�| = |�|, � �= �,

0, |�| ∈ [1, |�| − 1] ∪ [|�| + 1, |�| + r − 1],

(8)

as well as ∫
|y||�|+r |��(y)| dy < ∞, (9)

is imposed.
Provided these conditions are satisfied, the error in approximating the differential operator

by (1) is bounded by (see[8])

‖D� f − L� f ‖0,2 ≤ C1εr‖ f ‖r+2,2, (10)

where C1 is some constant and ‖ · ‖k,m is the norm of the W k,m(IRd ) Sobolev space. The
quadrature approximation of the integral operator incurs additional error, which is bounded
by

‖L� f − L�
h (t) f ‖0,2 ≤ C2

hm

εm+|�|−1
‖ f ‖m,2, (11)

provided that � ∈ W m,1(IRd ), f ∈ W m,2(IRd ), and the flow map is smooth. Thus, the error
bound accounts for distortion in the particle grid, but it should be noted that the proportion-
ality constant, C2, is dependent upon the duration of the simulation and the velocity field to
which the particles are subjected. In practice it is found that the particles must occasionally
be reinitialized to control dispersion that tends to degrade the quadrature.

Gaussian kernels such as those considered below belong to W ∞,1(IRd ), which appears to
make the quadrature spectrally accurate, provided that ε > h. In fact, when the domain is
finite, the proof of the error estimate also assumes either that the function f is periodic or
that the function and its derivatives vanish on the boundary of the domain. It is well-known
that midpoint quadrature leads to superb accuracy under these conditions, but if these do not
hold, then the estimate reverts to second order. However, reducing the error in (10) through
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an increase in the order of accuracy, r , is still very effective at mitigating the overall error,
as the examples in Section 5 will show.

The construction of the kernel is simplified considerably if we assume some symmetry
in its form. For instance, if the derivative we wish to approximate is even in the xl-direction
(i.e., �l is even), then we will construct ��(x) to be even with respect to this direction, and
consequently all moments in (8) for which �l is odd automatically vanish. Similarly, if �l

is odd, then ��(x) should be odd in this direction. With this symmetry,

��(−x) = (−1)|�| ��(x). (12)

With this form of kernel, the integral PSE operator (1) can take either sign in the integrand
when |�| is odd with no effect on its accuracy: the operator resulting from the Taylor
expansion above can be expressed as

L� f = 1

ε|�|
(
��

ε � f − M0 f
)
,

where � denotes convolution. The second term is zero if |�| is odd because the zeroth
moment vanishes. Thus, the subtraction may be replaced by addition without affecting the
approximation. However, the discretized operator (2) retains both terms because of the
conservation that it allows. The choice of sign is made because of (12).

Some examples will serve to illustrate the procedure of constructing a kernel. Consider
the original intent of the formula, to approximate the Laplacian operator. A kernel of order
r = 2 will be constructed for two-dimensional applications. In this case, the differential
operator is ∇2 = D(2,0) + D(0,2), and the moment conditions are

M(1,0) = 0, M(0,1) = 0,

M(2,0) = 2, M(1,1) = 0, M(0,2) = 2.
(13)

At first sight, it looks as though the kernel would need 5 degrees of freedom to satisfy the
entire set of five conditions. However, if the form of the kernel is chosen carefully, then
many of these conditions are redundant. For instance, choose the template

�(x) = 1

�

(
m∑

j=0

� j |x|2 j

)
e−|x|2 . (14)

The kernel possesses the symmetric form discussed above, so all of the moments with
at least one odd index vanish immediately without consideration of the coefficients, � j .
Also, it can be shown that all of the remaining conditions for a given value of |�| (i.e.,
on a given row in the moment table (13)) are satisfied if one of the conditions is satisfied
(including the M(2,0) and M(0,2) conditions, due to the symmetry of the kernel). Thus, only
one coefficient is needed to satisfy five conditions. The reason for this reduction is that the
conditions were expressed in Cartesian coordinates, whereas a cylindrical system would be
more appropriate for this particular operator. In fact, for a kernel of order r , we would need
only r/2 coefficients (i.e., m = r/2 − 1). Upon substituting the template (14) into (6) and
then expressing the integral in the more natural cylindrical system, each moment becomes
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a linear combination of the coefficients, � j ,

M� = 1

�

	
(

�1 + 1
2

)
	
(

�2 + 1
2

)
	
(
1 + |�|

2

) r/2−1∑
j=0

� j	

(
j + 1 + |�|

2

)
, (15)

where 	 is the gamma function. Continuing with the r = 2 example, an algebraic equation
is formed for the coefficient,

1

�
	(3/2)	(1/2)�0 = 2,

and the resulting kernel is �lap(x) = 4
�

e−|x|2 .
Now we derive a fourth-order-accurate kernel for application to first derivatives in two-

dimensional problems. Derivatives in the x1-direction are considered, but adaptation to the
other direction is straightforward. The moments conditions are

M(1,0) = −1, M(0,1) = 0,

M(2,0) = 0, M(1,1) = 0, M(0,2) = 0,

M(3,0) = 0, M(2,1) = 0, M(1,2) = 0, M(0,3) = 0,

M(4,0) = 0 M(3,1) = 0, M(2,2) = 0, M(1,3) = 0, M(0,4) = 0.

(16)

Again, many of these conditions are redundant if we choose our kernel template wisely. We
use

�(x) = x1

�

(
m∑

j=0

� j |x|2 j

)
e−|x|2 , (17)

for which all of the moments with at least one even index vanish, and in fact m = r/2 − 1
once again. The moments are then

M� = 1

�
	

(
�1 + 2

2

)
	

(
�2 + 1

2

) r/2−1∑
j=0

� j
	
( 2 j + |�| + 3

2

)
	
( |�| + 3

2

) . (18)

For the present example, only two coefficients are needed to satisfy 14 conditions. The set
of algebraic equations for the two coefficients is

[
	(2) 	(3)

	(3) 	(4)

](
�0

�1

)
=
(−2	(2)

0

)
.

The resulting kernel is �(1,0)(x) = x1
�

(−6 + 2|x|2)e−|x|2 ; for derivatives in the other direction,
the factor x1 need only be replaced by x2. The Appendix contains a list of kernels of several
orders of accuracy for many applications in both one and two space dimensions.

3.2. One-Sided Integral Approximations

In some circumstances, it is useful to have integral approximations that are “one-sided.”
In other words, the integration proceeds only over a half-space, with the particle defining
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the local origin. In this way, a particle only interacts with particles in this half-space, and
more precisely, only with particles in the intersection of this half-space with the kernel
support. This is particularly useful near boundaries, where particles only have a partial set
of neighbors.

A “left-sided” integral operator L�
L is defined as

L�
L f (x) = 1

ε|�|

∫

L

( f (y) − f (x))�L ,�
ε (x − y) dy, (19)

where the integration is over the half-space defined as 
L = {(y1, y2, . . . , yd ) ∈ IRd |y1 ≤ x1}
(i.e., the left-half space). Similarly, a “right-sided” operator is integrated over 
R =
{(y1, y2, . . . , yd ) ∈ IRd |y1 ≥ x1}. Note that there is no choice to make about the sign in
the integrand as there was in the full-space case, because these operators lack the symmetry
to conserve strength. The discrete form of the left-sided operator is

L�
L ,h f p = 1

ε|�|
∑

q
xq∈
L

Vq ( fq − f p)�L ,�
ε (xp − xq ). (20)

This special treatment does not change the derivation of the last section significantly. We
define a right-sided moment of the kernel as

M R
� =

∫ ∞

−∞

∫ ∞

−∞
· · ·
∫ ∞

0
y��L (y) dy1 dy2 . . . dyd , (21)

subject to the same conditions (8)–(9) as before. A right-sided moment appears in the
derivation of the left-sided operator because when the integrals are expressed in the local
particle-centered coordinate system, convolution uses a reflected form of the kernel and
thus swaps the limits of integration. However, it should be noted that if the same symmetry
form is assumed for one-sided kernels as for full-space ones, then the right- and left-sided
moments are related very simply: M R

� = (−1)|�|−|�|M L
� . In particular, M R

� = M L
� , and since

all other moments are constrained to be zero, kernels derived for left-sided PSE operators
can also be used in right-sided operators, and vice versa.

We derive here a second-order left-sided kernel for approximating ∂
∂x1

in two dimensions.
The same kernel template (17) will be used, although the kernel’s oddness in the x1-direction
cannot be exploited, as in the full-space case, because of the new limits of integration in
(21). The set of moment conditions is

M R
(1,0) = −1, M R

(0,1) = 0,

M R
(2,0) = 0, M R

(1,1) = 0, M R
(0,2) = 0,

(22)

and because the kernel is even in the x2-direction, the moments with an odd second index
are identically zero. Also, for the same reasons as in the full-space case, the rows on which
all moments are constrained to be zero collapse to one condition. We thus need only two
coefficients to satisfy the five conditions. The moments have analytical expression (cf.,
Eq. (18))

M R
� = 1

2�

	
(

�1 + 2
2

)
	
(

�2 + 1
2

)
	
( |�| + 3

2

) m∑
j=0

� j	

(
j + |�| + 3

2

)
, (23)
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which are assigned the appropriate values to form two equations for the coefficients.
Proceeding in this way we find that the second-order left-sided kernel is �L ,(1,0)(x) =
x1
�

(−20 + 8|x|2)e−|x|2 . Again, the same kernel can be used in a right-sided PSE operator, as
well as for one-sided derivatives in the x2-direction by replacing the x1 factor.

3.3. Stability

Degond and Mas-Gallic [8] showed that the solution of the convection–diffusion equation
with the diffusion operator replaced by its integral PSE counterpart is stable, provided certain
conditions are satisfied. They offer two proofs of this stability: one requires that 	 < Csε2,
where 	 is the diffusivity and Cs is a positive constant, and the other supposes that � is
nonnegative. The first proof precludes the limit of vanishing ε for a given diffusivity, an
unacceptable restriction. The second proof, which is termed “uniform stability,” imposes
no restriction on ε but limits the method to second-order accuracy, as only second-order-
accurate kernels can be nonnegative. Cortez [3] avoids both of these constraints with a proof
that merely requires that the Fourier transform of � satisfies �̂(k) ≤ �̂(0). While kernels of
greater than second order listed in the Appendix have negative portions, all the kernels
listed have Fourier transforms that obey this constraint. Thus stability is guaranteed even
for high-order-accurate kernels in convection–diffusion problems. When applied in other
contexts (e.g., wave propagation), PSE should obey a similar bound.

The stability of the quadrature (2) relies on the condition that the ratio of kernel radius
to interparticle spacing, 
 = ε/h, be greater than unity (i.e., the kernels of neighboring
particles must overlap). Without overlap, the particles cannot communicate and thus strength
exchange breaks down. As time progresses the flow will distort the particle grid, and locally
this overlap criterion may fail. As discussed above, it is important to reinitialize the particles
occasionally. Some examples in Section 5 will clarify the importance of this remeshing.

The time discretization of an equation in which PSE is used carries further stability
restrictions. While the proof of Degond and Mas-Gallic [8] for PSE applied to a convection–
diffusion equation with forward Euler differencing in time relies on the assumption that the
kernels are nonnegative, this is only a sufficient condition, and high-order-accurate kernels
are likely to allow stable time differencing. Without proof, we posit that an upper limit
on the time-step size of the problem is necessary for stability, as in conventional finite-
difference schemes, except that the kernel radius, ε, is the relevant length scale rather than
the interparticle spacing. For instance, in a diffusion problem with diffusivity 	, it is required
that �t < Cdε2/	, where Cd is some constant near unity, and in a convection problem, the
“CFL” number is restricted, �t < Ccε/c0, where c0 is a typical wave speed. The constants
will obviously depend on the time integration scheme used.

4. FOURIER ANALYSIS OF THE ERROR

The original intent of the PSE method was for application to convection–diffusion equa-
tions. When applied in such a parabolic context, the approximation modifies the original
differential equation by adding diffusive error terms. The strength of this diffusion is related
to the order of accuracy of the kernel. The application of PSE in this paper is extended to
many different settings, including those involving wave propagation. In this setting, the
role of the extra terms in the modified equation is dispersive rather than diffusive. As a
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demonstration of this effect, consider the one-dimensional linear wave equation:

∂2 f

∂t2
− ∂2 f

∂x2
= 0.

This equation is satisfied by a traveling wave, ei(kx−�t), for which the frequency is related
to the wavenumber by �(k) = ±k, indicating that it travels either to the left or the right
at unit speed, regardless of the wavenumber. If the spatial derivative is approximated by a
full-space PSE integral, the dependence of the frequency on the wavenumber for solutions
of the modified equation is changed. The local slope of this dispersion relation for some
wavenumber k is the group velocity of energy associated with k. Thus, a packet of waves
with wavenumbers centered at k will propagate at this speed, and if this speed varies with
k, then waves of larger bandwidth will be dispersed.

Here we explore this PSE-modified dispersion relation:

∂2 f

∂t2
− 1

ε2

∫ ∞

−∞
( f (y) − f (x))�(2)

ε (x − y) dy = 0.

Substitute the representative waveform f (x, t) = ei(kx−�t) and simplify to get

�2 = 1

ε2

(
M0 − �̂(2)(εk)

)
,

where �̂ denotes the Fourier transform of the kernel and M0 is the zeroth moment. Thus,
for the traveling wave to be a solution to the modified equation,

�(k) = ±1

ε

√
M0 − �̂(2)(εk).

With respect to the exact relation, the right-hand side can be regarded as a modified
wavenumber, kmod(k):

kmod(k) = 1

ε

√
M0 − �̂(2)(εk). (24)

Expanding �̂(2)(εk) in a Taylor series about εk = 0, and assuming that the r th-order-accurate
kernel is symmetric with respect to x , the modified wave number can be written as

kmod(k) = k

[
1 +

∞∑
n=r/2+1

(εk)2(n−1)(−1)n−1

(2n)!
M2n

]1/2

≈ k

(
1 + 1

2

∞∑
n=r/2+1

(εk)2(n−1)(−1)n−1

(2n)!
M2n

)
. (25)

Thus, the wavenumber is modified by the second term in parentheses. This term is dependent
upon k, so the speed of a traveling wave will depend upon k as well and thus the PSE
approximation is dispersive. However, increasing the order of accuracy of � clearly reduces
the strength of this dispersion, as the leading-order modification of the wave number is
proportional to εr .
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We have so far only considered the dispersive effects of the integral PSE approximation,
but in practice we use a discretized form of this. The discrete analog of (24) is

kmod(k) = 1

ε

√
M̃0 − �̃(2)(k), (26)

where M̃0 is the discrete zeroth moment,

M̃0 = h

ε

∞∑
p=−∞

�(2)(ph/ε), (27)

and �̃(2) is the discrete Fourier transform of the kernel,

�̃(k) = h

ε

∞∑
p=−∞

eikph�(2)(ph/ε). (28)

We have assumed here a grid of infinite extent with spacing h, which is a reasonable
approximation to an actual grid of finite length, provided that in the latter we consider the
solution away from the ends of the grid.

Figure 1a depicts the modified wavenumber—computed numerically—for the discrete
PSE operator using kernels of various orders of accuracy. According to the Nyquist sam-
pling theorem, the maximum wavenumber we can resolve on this grid is �/h. When the
data of nearby particles varies on a spatial scale that approaches the interparticle spac-
ing, the wavenumber content of the data extends to �/h. For the second-order-accurate
kernel, the group velocity, dkmod/dk, strays from unity even for small wavenumbers. How-
ever, increasing the order of accuracy of the PSE kernel has a considerable effect on its
approximating ability. The eighth-order-accurate PSE scheme is much less dispersive.

A similar analysis can be performed for the first-derivative PSE operator in the context
of the one-dimensional convection equation,

∂ f

∂t
+ ∂ f

∂x
= 0.

FIG. 1. Modified wavenumber in applying PSE to (a) wave equation and (b) first-order convection equation,
with second-, fourth-, sixth-, and eighth-order kernels; 
 = 1.4. Exact, ———; discrete PSE, —�—.
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FIG. 2. Packet of waves centered at k0 = 0.32�/h, convected with (a) second-order and (b) eighth-order PSE.
At t = 0, − − −; at t = 1.5, ———.

Assuming the same form of solution as before, the frequency and wavenumber are found to
be related by �(k) = k, so waves of any wavenumber travel with unit speed in the positive x-
direction. The modified wavenumber using the discrete PSE operator for the first derivative
can be shown to be

kmod(k) = − i

ε
�̃(1)(k). (29)

This relation is plotted in Fig. 1b for r = 2, 4, 6, and 8. The same poor behavior of the low-
order-accurate PSE operators is apparent, as is the significant improvement using higher-
order-accurate kernels. Figure 2a demonstrates the importance of minimizing dispersion.
A packet of waves of the form

f (x) = 1√
��2

e−(x−x0)2/�2
cos(k0x),

with radius � = 0.1, is used as an initial condition for the convection equation, to which
a second-order PSE approximation is applied. The packet is Gaussian distributed about
the wavenumber k0, which we set to 0.32�/h. According to Fig. 1b, the PSE-modified
group velocity at this value is approximately zero. As expected, the pulse has not moved
after 1.5 units of time. In contrast, the same packet simulated using an eighth-order PSE
approximation moves the correct distance, as Fig. 2b shows.

The use of the modified relationship between frequency and wavenumber to assess the
error of PSE need not be limited to hyperbolic problems. The analysis is equally important in
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FIG. 3. Modified viscosity in applying PSE to diffusion equation with second-, fourth-, sixth-, and eighth-order
kernels; 
 = 1.4.

a diffusive context, revealing the extent to which numerical viscosity affects the components.
Consider the one-dimensional diffusion equation,

∂ f

∂t
= 	

∂2 f

∂x2
.

The exact relationship between frequency and wavenumber is �(k) = −i	k2. Applying PSE
to the spatial derivative results in the same modified wavenumber as for the wave equation
(24). Alternatively, the modification can be viewed as affecting the viscosity. Expressing
this new viscosity in terms of the kernel’s integral moments, we have

	mod = 	

(
1 −

∞∑
n=r/2+1

(εk)2(n−1)(−1)n−1

(2n)!
M2n

)
.

The discrete counterpart of this modified viscosity is plotted in Fig. 3 for the usual set of
kernels. It is clear that high-wavenumber components are underdiffused, but that high-order-
accurate kernels mitigate this discrepancy. A second-order-accurate kernel leads to too little
diffusion for even well-resolved data, but eighth-order-accurate PSE performs much better.

It should be added that such a modification of the viscosity can actually be exploited. For
inviscid simulations, Cottet [4] has shown that the numerical viscosity resulting from the
mollifying of the velocity kernel in vortex methods—the mollifying leads to an error similar
to that of PSE—can be tailored to derive an eddy viscosity model, which is essential for
capturing the self-organizing of vorticity into large-scale structures from an initially chaotic
field. Monaghan and Gingold [14] have used numerical viscosity to reduce the oscillations
near shocks in SPH.

5. RESULTS

The tests described in this section are very simple, but they demonstrate fundamental
characteristics of PSE that also arise when it is applied to more complex problems.
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5.1. Rates of Convergence and Efficiency

The purpose of the set of tests described here is twofold: to demonstrate that the high-
order-accurate PSE kernels derived in this paper do indeed lead to convergence at their
designed rate, and to show that increasing the order of accuracy of a kernel leads to more
efficient computation. The second derivative of the function,

f (x) = 1√
��2

e−x2/�2
,

is used as the model for evaluation, with � = 0.05. The derivative is approximated on a
uniform grid of points on the domain [−1/2, 1/2]. The ratio of kernel radius to interparticle
spacing, 
, is set at either 1.5 or 2. The discrete L2 error between the exact derivative and its
PSE approximation is computed for a variety of grid resolutions; kernels of second-, fourth,
sixth-, and eighth-order accuracy are used. The results for 
 = 2 are shown in Fig. 4. The
error, 
, converges as expected for all four kernels: 
 ∝ hr or, equivalently, 
 ∝ εr .

A question we may ask is as follows: What is the minimum number of grid points
needed to achieve some specified tolerance of error? The computational effort appears to be
proportional to the square of the number of grid points, N 2, but with appropriate truncation
of point-to-point interactions it can be made proportional to N . Thus, the minimum number
of points required to reach a specific level of error is directly related to the efficiency of the
kernel, a very useful metric. This information is readily available from Fig. 4 by choosing
a level on the vertical axis and reading across to where the level intersects each kernel’s
convergence curve, then inverting the corresponding grid spacing to get N . For the level

 = 10−4, the results for each kernel are tabulated in Table I. Also displayed is the CPU
time required to compute this derivative, on a SGI Octane with an R10000 processor. The
second-order-accurate kernel requires a very large number of points to achieve the tolerance,
while the fourth-order-accurate kernel needs only about 1/10 of this number, and the sixth-
and eighth-order-accurate kernels require successively fewer.

FIG. 4. Error in computing second derivative for several grid resolutions for kernels of varying order of
accuracy. Order 2, �; order 4, �; order 6, �; order 8, �.
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TABLE I

Minimum Number of Particles to Achieve Error

of 10−4 and Corresponding CPU Time

Order r Minimum N CPU time (s)

2 3440 4.28
4 354 0.0478
6 165 0.0114
8 111 0.00705

The data can be reduced to the following approximate relation:


 ≈ 0.9(18ε)r .

The appearance of a constant factor inside the parentheses may seem surprising. However,
the error bound (10) contains the Sobolev norm of f , and it can be shown that this particular
norm of the Gaussian is proportional to 1/�r , so the error is bounded by 
 ≤ C ′(ε/�)r , where
C ′ is another constant. In our tests 1/� = 1/0.05 = 20, so the results are consistent with the
expected bound. This form of the error bound explains why the successive improvement
in efficiency of each kernel over the previous one becomes less striking as r increases in
Table I. The minimum number of grid points required to reach a fixed level of error is
proportional to (C ′′)1/r , where C ′′ is constant. Thus, past a certain point, increasing the
order of accuracy of the kernel does not markedly improve the efficiency.

5.2. Wave Propagation Using Full-Space Kernels

The dispersive character of PSE when applied to hyperbolic problems was analyzed in
Section 4. This character is exhibited in the following example involving a two-dimensional
Gaussian pulse. Initially,

f (x, y) = 1

��2
e−((x−x0)2+(y−y0)2)/�2

,

which is allowed to convect at unit speed in a direction 54◦ relative to the x-axis, or the
direction ĉ = (0.59, 0.81), on particles that are held fixed. This direction is chosen because
it is not aligned with any grid symmetry. The initial configuration is shown in the upper
plot in Fig. 5; the pulse radius � is 0.1. The spatial derivative in the convective operator
is approximated with PSE, with 
 = 1.8, first using a second-order-accurate kernel and
then an eighth-order-accurate one, on a uniform 51 × 51 grid. Thus, the core of the pulse
is 11 particles in diameter. After 0.5 units of time, the pulse in the second-order case has
significantly dispersed, but in the eighth-order case the pulse has not deformed and is located
at the correct position.

5.3. Wave Propagation Using One-Sided Kernels

The previous example illustrated the use of PSE in convection problems when particle
coverage is sufficiently isotropic about the kernel center. But this is not the case near the



DERIVATIVES IN PARTICLE METHODS 701

FIG. 5. Gaussian pulse convecting in direction ĉ = (0.59, 0.81). At t = 0 (− − −) and t = 0.5 (———) using
(a) a second-order kernel and (b) an eighth-order kernel.

edge of the computational domain, and one-sided kernels are useful in such circumstances.
We solve the same problem here as in the previous example, situating the pulse initially
at the center of the domain. Eventually the pulse travels to the upper right corner of the
domain. Figure 6 demonstrates the instability that results from a waveform trying to pass
out of a domain using an eighth-order-accurate full-space kernel. When the particles near

FIG. 6. Eighth-order full-space kernel in convection. At t = (a) 0.25, (b) 0.375, (c) 0.5, and (d) 0.625.
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the corner acquire strength, they lack neighbors downwind of the propagation direction
with which to exchange their strength.

When a one-sided kernel is used, with the half-plane of integration chosen to coincide
with the upwind direction, the instability of the full-space kernel is avoided, as demonstrated
in Fig. 7. The kernel used here, which is third-order-accurate, only exchanges strength with
particles on the upwind side of the pulse and thus has no difficulty near the boundary. Only
slight dispersion of the pulse is apparent.

FIG. 7. Third-order one-sided kernel in convection, with one-sided integration plane aligned with upwind of
propagation direction. At t = (a) 0.25, (b) 0.375, (c) 0.5, (d) 0.625, and (e) 0.75.
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5.4. Assessment of the Effects of Grid Distortion

The previous examples were all simulated on stationary grids, but a clear assessment of
how PSE behaves when its quadrature points are dispersed by the flow map is also important.
Consider the same Gaussian pulse, now convected with the velocity field u + ĉ, where
ĉ = (0.59, 0.81), as before. Though not based on physics, this problem shares features that
arise in physical phenomena. For instance, an acoustic wave that travels through a vortical
region is convected by a velocity that is the sum of the fluid velocity and the local speed of
sound. The equations governing the particles in the convecting frame are

d f̃ p

dt
= 0,

dx̃p

dt
= u(x̃p(t)) + ĉ,

dṼ p

dt
= div u(x̃p(t))Ṽ p(t).

If initially x̃p(0) = � p, f̃ p(0) = f (� p), and Ṽp(0) = h2, then the solution is simply f̃ p(t) =
f (� p), x̃p = � p + ĉt + ∫ t

0 u(x̃p(� )) d� , and Ṽp(t) = J (t ; � p)h2, where J (t ; �) is the Jacobian
of the flow map. However, this problem can also be solved by convecting the particles with
velocity u and treating the convection by ĉ through a modification of the particle strengths.
In this new frame,

d f p

dt
= −(ĉ · ∇ f )(xp(t)),

dxp

dt
= u(xp(t)),

dVp

dt
= div u(xp(t))Vp(t).

As in the previous examples, the right-hand side term of the first equation is treated with
PSE. We will separately consider two different types of velocity fields, u: the first induced
by a Gaussian-distributed vortex with circulation 	0 at the center of the domain, and the
second induced by a Gaussian source of strength Q0 at the same position. Both Gaussians
have the same radius as the pulse, which is initially placed at (0.25, 0.25).

Under the vortex-induced velocity with 	0 = 0.5, the grid distortion after 0.25 units of
time (or 25 time steps) is as shown in Fig. 8. The solution using eighth-order-accurate PSE
with 
 = 1.8 is plotted with the exact solution at this time level in Fig. 9. The agreement
is quite good, despite the dramatic stretching of the grid near the center of the domain.
However, increasing the strength of the vortex to 	0 = 0.85 leads to breakup of the pulse
as it passes through this straining region, as shown in Fig. 10a. Remeshing onto a uniform
grid every 10 steps prevents the particles from becoming too dispersed, and Fig. 10b shows
that the the exact solution is well approximated. Thus, PSE can withstand some distortion
in the grid, but only to a degree, beyond which remeshing is necessary.

A source-induced velocity leads to dilatation of the particles, as shown in Fig. 11 for
Q0 = 0.2 at t = 0.35, from which the obvious consequence is a loss of overlap of particles,
as the kernel radius is held constant. Indeed, the pulse has become unstable at t = 0.35,
depicted in Fig. 12a. But remeshing every 10 steps prevents the particle spacing from
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FIG. 8. Particle grid distorted by Gaussian vorticity field, 	0 = 0.5, at t = 0.25.

FIG. 9. Convection in ĉ = (0.59, 0.81) plus Gaussian vorticity field, 	0 = 0.5, at t = 0.25. Using PSE, ———;
exact, − − −.

FIG. 10. Gaussian vorticity field, 	0 = 0.85, at t = 0.25. (a) Without remeshing, and (b) remeshing every
10 steps. Using PSE, ———; exact, − − −.
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FIG. 11. Particle grid distorted by Gaussian source field, Q0 = 0.2, at t = 0.35.

growing beyond ε, and so the pulse convects cleanly through the center of the domain, as
shown in Fig. 12b.

If the particle grid undergoes dilatation without significant anisotropic straining, as in this
example, then the need for remeshing may be delayed, or eliminated altogether. PSE can be
adapted to account for variably sized particles, using a known mapping to a uniform grid, as
shown by Cottet et al. [6], or by simply allowing variable kernel radius in the PSE operator,
as described by Ploumhans and Winckelmans [15]. We demonstrate the latter method here.
The local kernel radius is continuously adjusted to keep its ratio to the interparticle spacing
near 
. To preserve the symmetry of the PSE operator, a mean of the squares of the kernel
radii of particles p and q is used:

ε2
pq = 
2

2
(Vp(t) + Vq (t)).

FIG. 12. Gaussian dilatation field, Q0 = 0.2, at t = 0.35. (a) Without remeshing and (b) remeshing every
10 steps. Using PSE, ———; exact, − − −.
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FIG. 13. Gaussian dilatation field, Q0 = 0.2. (a) At t = 0.30 and (b) at t = 0.35. Variable-kernel-size PSE,
———; exact, − − −.

The results using this technique are shown in Fig. 13. In Fig. 13a, at t = 0.30, the pulse is
passing through the region of expanded particles but still matches the exact solution quite
well. The pulse at t = 0.35 exhibits some deformation, depicted in Fig. 13b. However, it is
apparent that variable-kernel-size PSE has at least delayed the need for remeshing.

6. CONCLUSIONS

The deterministic method known as particle strength exchange for approximating the
Laplacian by integral operators has been extended in the present work through the de-
velopment of higher-order-accurate kernels for use in approximating arbitrary differential
operators. These new kernels allow many new applications of PSE, particularly in wave
propagation problems, but also in the baroclinic term in vortex particle methods for com-
pressible flows [9] and other contexts not listed.

Use of PSE in the wave operator raises new questions, to which we have provided answers:
What happens for waves (or other physical phenomena) near the periphery of particle cover-
age? Does a propagating pulse get dispersed by the PSE operator? For computing derivatives
near the edge of the computational domain, we developed one-sided integral operators which
only look inward for information. Such a treatment is used for enforcing a nonreflecting
boundary condition by Eldredge et al. [9] and could be applied to wall-bounded flows as an
alternative to the image treatment employed by Ploumhans and Winckelmans [15]. The dis-
persive character of PSE was explored and it was found that only high-order-accurate kernels
should be used in these contexts. The efficiency of kernels was explored, and it was found
that increasing the order of accuracy of the kernel improves the computational efficiency, but
by an amount which decreases as the order increases. Finally, it was shown that on smoothly
distorting grids PSE performs reasonably well, especially when kernels of variable size are
employed, but that remeshing is ultimately essential for accuracy at long times.

APPENDIX: A LIST OF KERNELS

For reference, this appendix contains kernels of several orders of accuracy for application
to first and second derivatives in one- and two-dimensional problems, in both full-space
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and one-sided operators. As a shorthand, the kernel is expressed as

�(�1,�2,...,�d ),

where the superscript indicates the �th
1 derivative in the x1-direction, the �th

2 derivative in
the x2-direction, and so on.

One-Dimensional First Derivatives, Full Space

�(1)(x) = x√
�

e−x2 ×




(−2), second order,

(−5 + 2x2), fourth order,(− 35
4 + 7x2 − x4

)
, sixth order,(− 105

4 + 63
4 x2 − 9

2 x4 + 1
3 x6
)
, eighth order.

One-Dimensional First Derivatives, Left Sided

�L ,(1)(x) = x√
�

e−x2 ×




(−4), first order,

(−16 + 8x2), second order,

(−40 + 44x2 − 8x4), third order,(−80 + 144x2 − 56x4 + 16
3 x6

)
, fourth order.

Right-sided kernels are identical to the left-sided ones.

One-Dimensional Second Derivatives, Full Space

�(2)(x) = 1√
�

e−x2 ×




(4), second order,

(10 − 4x2), fourth order,(
35
2 − 14x2 + 2x4

)
, sixth order,(

105
4 − 63

2 x2 + 9x4 − 2
3 x6
)
, eighth order.

Two-Dimensional First Derivatives, Full Space

�(1,0)(x) = x1

�
e−|x|2 ×




(−2), second order,

(−6 + 2|x|2), fourth order,

(−12 + 8|x|2 − |x|4), sixth order,(−20 + 20|x|2 − 5|x|4 + 1
3 |x|6), eighth order.

Note that the (0, 1) derivative is approximated using the same kernels with the x1 factor
replaced by x2.
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Two-Dimensional First Derivatives, Left Sided

�L ,(1,0)(x) = x1

�
e−|x|2 ×




(−4), first order,

(−20 + 8|x|2), second order,

(−60 + 52|x|2 − 8|x|4), third order,(−140 + 196|x|2 − 64|x|4 + 16
3 |x|6), fourth order.

Again, these kernels are identical to their right-sided counterparts, and they can be adapted
for use in approximating the (0, 1) derivative by replacing x1 by x2.

Two-Dimensional Laplacian, Full Space

�lap(x) = 1

�
e−|x|2 ×




(4), second order,

(12 − 4|x|2), fourth order,

(24 − 16|x|2 + 2|x|4), sixth order,(
40 − 40|x|2 + 10|x|4 − 2

3 |x|6), eighth order.
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